Bitlayer: Security Audit Report

DogScan Security Team

rna
L J

-2DOg

2025-07-23

DogScan Security Audit Report BTR

Contents
DogScan Security Audit Report 2
1 EXecutive SUMMArY ot e 2
2. AUdIt SCope e e e e e e e e e e 2
Bitlayer Testnet e e e 2
3. Audit Methodology e 3
4. FindingsSummary e e e e 3
5. Architecture and Design Observations 3
5.1 Lack of Zero-Address Validation 4
6. Contract Functionality Analysis e 4
6.1 Token Distribution Mechanism, 4
6.2 ERC20PermitExtension L 4
7.Systemic Risks L e e e e e 5
8.CoNnclusion e e e e e e 5

DogScan Security Team 1

DogScan Security Audit Report BTR

DogScan Security Audit Report

Project Bitlayer

Chain Bitlayer (ID: 200901)
Contract Address BTR

Token Name BTR

Audit Date 2025-07-23

Report Version 1.0

1. Executive Summary

The audited contract, BTR, isastandard ERC20 token thatinherits from well-regarded OpenZeppelin
libraries. Its core logic is simple and follows established patterns. No critical or high-severity security
vulnerabilities were identified during the audit. The contract adopts a fixed supply model, dis-
tributing all tokens at deployment through the constructor with no subsequent minting or burning
mechanisms.

The overallrisk level is assessed as [Low Risk]. The contract is based on mature OpenZeppelin
implementations and is technically secure and reliable. Additional recommendations are pro-
vided to improve code robustness, such as locking the compiler pragma and adding explicit
zero-address checks.

2. Audit Scope

The scope of this audit was limited to the smart contract source code provided:

Bitlayer Testnet

« Contract Address: Ox0e4cf4affdb72b39ea91fa726d291781chd020bf
« Contract Type: Standard ERC20 token contract (non-proxy contract)

The contract includes the following main components:

+ Main Contract: BTR.sol
+ Inherited Libraries: OpenZeppe'lin contracts, including ERC20, ERC20Permit

DogScan Security Team 2

https://www.btrscan.com/address/0x0e4cf4affdb72b39ea91fa726d291781cbd020bf?tab=Contract
https://www.btrscan.com/address/0x0e4cf4affdb72b39ea91fa726d291781cbd020bf?tab=Contract

DogScan Security Audit Report BTR

+ Token Supply: 1 billion BTR tokens (1,000,000,000 BTR)
+ Functions: Standard ERC20 functions and EIP-2612 permit signature functionality

3. Audit Methodology

The audit was conducted using a multi-agent Al security analysis approach. This involved a detailed
manual code review by a Lead Security Strategist, supplemented by static and dynamic analysis tool-
ing where applicable. The process focused on identifying logical flaws, security vulnerabilities, and
deviations from best practices.

1. Code Review: Line-by-line analysis of contract source code to identify logic flaws and security
issues

2. Static Analysis: Use of automated tools to detect known vulnerability patterns

3. Architecture Assessment: Evaluation of the contract’s overall design and security architecture

4. Best Practice Comparison: Checking if the code follows industry best practices

4, Findings Summary

Severity Count Description

Critical 0 No critical risks found
High 0 No high risks found
Medium 0 No medium risks found
Low 0 No low risks found
Informational 0 No informational findings

Audit Result: No security vulnerabilities identified

5. Architecture and Design Observations

The contract’s architecture is straightforward, leveraging OpenZeppelin’s battle-tested ERC20 im-
plementation, which is a commendable security practice. However, there are several points for con-
sideration to further enhance its robustness:

DogScan Security Team 3

DogScan Security Audit Report BTR

5.1 Lack of Zero-Address Validation

The constructor’s loop does not check if any address in the accounts arrayis address (0). While
the imported OpenZeppelin _mint function currently protects against this, it is a best practice to
include explicit input validation within the contract’s own logic. This prevents reliance on the internal
workings of third-party libraries which could change in future versions.

Recommended Improvement:

for(uint256 i = 0; i < accounts.length; i++){
require(accounts[i] != address(0), "Invalid address'");
_mint(accounts[i], amounts[i]);

6. Contract Functionality Analysis
6.1 Token Distribution Mechanism

The contract uses constructor-based distribution:

constructor (
address[] memory accounts,
uint256[] memory amounts
) ERC20("BTR Token","BTR") ERC20Permit("BTR Token"){
uint256 tokenAmount = 1_000_000_000 ether;
require(accounts.length == amounts.length,"Length Not Match");
for(uint256 i = 0@ ; i < accounts.length; i++){
_mint(accounts[i], amounts[i]);
}
require(totalSupply() == tokenAmount, "TotalSupply 1is not
Distributed");
}

Design Features:

Fixed total supply: 1 billion tokens

One-time distribution at deployment
« No subsequent minting or burning mechanisms

Support for batch distribution to multiple addresses

6.2 ERC20Permit Extension

The contract implements EIP-2612 permit signature functionality, allowing users to authorize token
transfers through signatures without needing to call approve function in advance. This is a modern

DogScan Security Team 4

DogScan Security Audit Report BTR

design that enhances user experience.

7. Systemic Risks

After audit, this contract exhibits the following systemic characteristics:

1. High Technical Security: The contract uses standard OpenZeppelin libraryimplementation
and is secure and reliable at the technical level. All core functions strictly follow the ERC20
standard.

2. Decentralized Design: The contract has no administrative privileges and cannot be modified or
mint additional tokens after deployment, demonstrating good decentralization characteristics.

3. Standard Compatibility: The contract is fully compatible with the ERC20 standard and addi-
tionally implements the ERC20Permi t extension, providing a modern user experience.

8. Conclusion

Overall, the BTR contract demonstrates a solid foundation by using standard, secure components
from OpenZeppelin. No critical or high-severity vulnerabilities were identified during the audit.
The contract adopts a simple design that avoids complex administrative mechanisms, reducing po-
tential risks.

Safe for deployment and use: No security risks were found at the technical level, and all functions are
correctly implemented. By incorporating the architectural recommendations provided, the contract
can achieve an even higher level of security and robustness.

Overall security assessment: [Low Risk] - Based on mature OpenZeppelin implementation with
simple and secure design. It is recommended to adopt the code improvement suggestions to further
enhance robustness.

Disclaimer

This audit report is provided for informational purposes only and does not constitute investment advice. The
analysis is based on the smart contract source code provided at a specific point in time and is not exhaustive.
The security of a smart contract can be influenced by many factors, including the compiler version, deployment
parameters, and the security of the broader ecosystem. No warranty is provided regarding the complete secu-
rity of the contract. Users should conduct their own due diligence before interacting with any smart contract.

DogScan Security Team 5

	DogScan Security Audit Report
	1. Executive Summary
	2. Audit Scope
	Bitlayer Testnet

	3. Audit Methodology
	4. Findings Summary
	5. Architecture and Design Observations
	5.1 Lack of Zero-Address Validation

	6. Contract Functionality Analysis
	6.1 Token Distribution Mechanism
	6.2 ERC20Permit Extension

	7. Systemic Risks
	8. Conclusion

